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A Unified Dynamic Model and Control Synthesis for Robotic
Manipulators with Geometric End-Effector Constraints

Sam-Sang You*
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A compact dynamic model and a hybrid position/force controller for a constrained robot

manipulator, subject to a set of holonomic (integrable) constraints have been developed in this

study. The joint-space dynamics (DAEs) has been transformed into the constraint-space model

in which the system dynamics can be readily decomposed into two orthogonal subsystems; the

motion-controlled subsystem is specified in the direction tangential to the known constraint

surfaces, and the force-controlled subsystem is regulated in the orthogonal direction. Also

utilizing the transformed dynamics, we have presented a hybrid adaptive control law to simulta­

neously manipulate the end-effector position and the contact force. Further, by a Lyapunov

theory, it has been shown that the corresponding closed-loop system is globally stable under the

parametric uncertainties.

Key Words: Hybrid Control, Constrained Robot, Holonomic Constraints, Differentiable­

algebraic Equations (DAEs), Force-controlled (Position-controlled) Subsystem,

Contact Force, Asymptotic Stability, Closed Kinematic Chain, Tangential (Orth­

ogonal) Subspace, Lyapunov Theory

Nomenclature --

Symbols written in bold type denote vectors or

matrices, while scalars are written normally:

m+ : A set of non-negative real number;

ffi+: =[0, +co)

mn : The n-dimensional vector space

with real elements ;Il

;Ilnxm :A set of all real-valued (n;<m)

matrices

sup : The supremum, the least upper

bound

[x] : The Euclidean norm of a vector x :
II .e]=C. [X TX]1/2, V xE~lf'

A :'>O( <0) : A positive(negative) definite matrix

A
: The maximum eigenvalue of matrix

A;tlrnax(A)= max{tl,(AJ}, where
i

).,(A) is the i th eigenvalue of
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IIAII

Enxn

OnX!l

(0 )'

rs(A)

rkL4)

matrix A
: The minimum eigenvalue of matrix

A; tlrnin(A)=min{tl,(A)\,
: The induced norm of a real matrix

A (=ffi nxm; IIAII= [tlrn"x(ATA)] 1/2

: A set of I)-times continuously differ-

entiable functions

: An i n X n) identity matrix

: A n-dimensional null vector

: A i n X n) null matrices

: The function norm in the Lebesgue

space; Let f(t): ~n+ ----> ffin be

Lebesgue measurable function, then

the Lp-norm II flip is defined as II flip

=[ r=llfUWdt]I/P<C'O, for pErI,
..In

). When p=co, fEL= if and

only if IIFII= sup II fWll < co
t E 10,+00)

: A complement of ( 0 )

: The range space of matrix A(or

column space of A)

: The rank of matrix A
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During the last decade, there has been consider­

able research on the motion control of uncon­

strained robot manipulators whose end-effector

do not significantly contact with the external

environment.(Ortega, et. aI., 1989; Reed, et. al.,

1989; Sadegh, et. aI., 1990) In general, these

methods are mainly concerned with a pure posi­

tion control. However, practical applications of

such a system to higher level tasks are severely

limited due to its performance. For example, in

the execution of the advanced tasks involved in

flexible manufacturing systems, such as machin­

ing tasks (grinding, deburring, polishing, etc.),

assembly operations, and various material handl­

ing, the motion of the robot end-effector is

kinematically constrained in some directions. A

constrained robotic system, which forms closed

kinematic chains, provides higher flexibility and

dexterity in performing complex tasks. In these

cases, a position control alone could lead to

excessive contact forces or loss of contact with

external environments. Therefore, to greatly

enhance system performance, it is necessary to

control both the position of the end-effector and

the contact forces exerted by the end-effector on

the environment.

For facilitating the dynamic analysis and the

control synthesis, the proper mathematical model

of such a system should be first formulated. The

dynamics of the constrained robot system was

discussed in references.(Mason, 1981 ; Raibert, et.

aI., 1981; Khatib, 1987) Unfortunately, none has

employed a unified framework. Among the vari­

ous approaches to the hybrid control architecture,

the impedance control and the position/force
control have been extensively suggested in the

literature. In the hybrid position/force control,

the position/force can be directly controlled to

achieve accurate tracking performance. In the

impedance control approach,(Hogan, 1985;

Kazerooni, et. aI., 1986; Wen, et. aI., 199]) the

ns(A) : The null space (or kernel) of matrix

A

1. Introduction

external environment is modeled as a mechanical

impedance to produce compliant motion, and

thus the contact force is manipulated indirectly as

a result of the position control. Mason(Mason,

1981) identified the task constraints represented

by natural and artificial constraints. Based on the

decomposition of the task space, Raibert and

Craig(Raibert, et. aI., 1981) suggested a hybrid

controller. And without parametric uncertainties

in the robotic model, a class of hybrid control

strategies have been proposed, for example,

studies by Yoshikawa(Yoshikawa, 1987) and

Mcclamroch and Wang.(McClamroch, et. aI.,

1988) From a practical point of view, any dynam­

ical system contains various system uncertainties.

This problem motivates the adaptive control

approach. Although several hybrid adaptive con­

trol schemes for robot manipulators have been

suggested to date,( Han, et. aI., 1990; Carelli, et.

aI., 1990 ; Fossen, et. aI., 1991) more studies need

to be conducted to ascertain the global stability of

the control system, which simultaneously guaran­

tees the asymptotic stability of the end-effector

positions and the contact forces.

The primary aim of this research is to provide

a compact approach to dynamics formulation and

control synthesis for the robotic manipulator with

closed kinematic chain. The first task is to trans­

forms the joint-space dynamics (DAEs) into the

constraint-space model. The constraint frame is

set up as a direct sum of the position-controlled

subspace and the force-controlled subspace; the

position subspace spanned by tangential vectors

and the force subspace generated by normal

vectors. Next, based on the new dynamic model,

we present a hybrid impedance controller guar­

anteeing the global stability of the closed-loop

system. The generalized positions and the contact

forces of the gripper are simultaneously regulated

in two orthogonal directions; the position con­

trol in the free directions and the force control in

the constrained directions. Therefore, it is shown

that the robot system can be globally stabilized by

the proposed control algorithm.

The rest of this paper is organized as follows.

First, the system dynamics and problem formula­

tion will be addressed in Sec. 2. After that, a
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hybrid adaptive control law is introduced in Sec.

3. Finall y, the conclusion s are given in Sec. 4.

2. System Dynamics and Problem
Formulation

2.1 Preliminaries and the joint-space
dynamics

This section provides a un ified formul ation for

the k inematics and th e dynamics of ph ysicall y

con str ain ed robot man ipul ators. Consi der the

robotic system interacting with external objects,

as sho wn in F ig. I. In o rder to descr ibe the

kinematic and dynam ic relationsh ips among the

components of the clo sed chain mech an ism, a set

of coordinate systems a re defined as foll ows:

flT{"o -: Tx Ty TZ } is the reference (o r absolute)

coordinate system ; lle { ' o _ Cx Cy cz ) is the end ­

effector frame; J1c{Co - cxc:/ z } is the con straint

coord inate system.

In wh at follows. the concept of a configuration

manifold will be briefly d iscus sed . F irst , co ns ide r

an uncon str ained mot ion of a robot ic mechan ism

whose joint position vecto r is denoted by q Em n

Let p = [r TWT JTEffinu( nosn) be a gen eralized

position vecto r of the end-effector with respect to

Il-, wh ich is consists o f the Cartesian po sition

vecto r r and the vecto r IfJ' = [aSyJT associ ated

wi th the th ree Euler par ameters. For rep resenting

arbitrar y positi on s and orie nta tions , p is typica lly

ch osen as a 6-dimen sional mani fold. Th roughout

the stu dy , we con sider the nonredundant ro bo tic

man ipulator, i.e., JI,, = n( ta king JI,,=6 ). As shown

pictorially in Fig . 2, the rotat ion al motion can be

described by the three Euler angles. More specifi­

ca lly, the Euler angles are specified in terms of the

images of the three par ameterst p . (3 . y ) obta ined

by performing three elementa ry rotations of the

body-attached fra me Il; with respect to the fixed

fra me I], in a r ight-handed sense, th at is, ro ta ti ng

a ang le ab out the z ax is, then S ang le about the

new y axis, and fina lly r an gle a bo ut the new x
axis. Then the resulting ove ra ll transformati on is

given in a 3 X 3 matrix as

[

Ca C~ CaSPSr -SaCr c aspCr + S as r I
R = " " SaSPS~ ~CaCr SaSP('~ ~ ('aS r (I )

- !>p CP.\ r ( pc ' .

wh ere for co nvenience, Ca = Co s( a ) , sp= s in(fj'),

and Cr = CUS ( r ), and so o n. Thus the o rthogona l

rot ation mat rix R maps the vecto rs from Il; into

IlT • For the pre sent study, th e Euclidean moti o n

of a rigid body (or frame) in a three-d imensio na l

workspace can be specified by(you , 1994)

( I' , R)E ~)13 x SO(3 ) = S'E( 3)

where the Special Orthogonal gro up of orde r 3,

whi ch is denot ed by the Lie gro up SO(3)( cwx 3
) ,

represents a set (or a group) of a ll proper 3 X 3

End-effector

y,Y

Cz

•••

lJn~__•

Fig. 1 Schematic dia gram of a constrained robot
system

Fig. 2 Geometrical representat ion of Euler angles
(yaw. pitch , and ro ll)



206 Sam-Sang You

sents a mappmg from the joint space to the end­

effector space. And this transformation is continu­

ous, invertible, and twice differentiable with

respect to q (that is, a C2 or often smooth func­

tion COO). By chain rule of differentiation, the

velocity relation is then given by

v=Jvq (6)

with Jv=SJ and J=iJh/iJq, where JvEmnxn is

the standard Jacobian with a full rank, and a

unique inverse mapping exists if J; is a nons in­

gular matrix with a maximal rank.

If a set of m( < n) time-varying hypersurfaces

are imposed on the end-effector by external con­

straint surfaces, then its algebraic equation can be

expressed as

rotational matrices on m3 and is a three­

dimensional submanifold of ~W And 50(3) can

be formally defined as

50(3)={REm3X3: del(R)= + I, RTR

=RR T =E3 x 3 }

Consequently, the Special Euclidean group

denoted by 5E(3) with dimension 6 can be con­

sidered as the configuration space for rigid

bodies.

Now, wEm:J denotes the angular velocity

vector of the frame Tl; with respect to Il-, and the

time derivative of the orientation vector is called

the Euler rates ( Ijr). Then the kinematic relation­

ship between the angular velocity and the rates of

Euler angles is given as

w(t)=wljr (2)

in which the matrix WE~}J3X3 is defined as

(fJf(P) = lrPf1(P)"'rPf"'(P)] T=0", or

rPf'(P) =0, (i= I, "', m) (7)

where h«():~W---+mn(or 51'£(3), n=6) repre-

where w=col({J)x' {J)y, (J)z); thus \l={\lE~}J:l"j:

\IT = -\l}, with \lEso(3)cm3X3. With the defini­

tion given above, the generalized velocity vectors

(or twists) are related as

v=S(p)p, with p=(r, R)E5E(3)

n=6 (4)

where v=[rTwTFE~}J6and p=[rTIjJ'T]TE=:~H6,

with S = [ E3x3
03X3 ] Em6 X6. Clearly, S is also a

O:lx:J W
nonsingular matrix. Then the forward kinematics

M(q;fJ)ijl-C(q, q;@lq+G(q;t9)

+ T c = T, V t?O with (fJ;(p)=O",

and p= hi q) (9)

where q. q, and ijEm" are the vectors represent­

ing the joint positions, velocities, and accelera­

tions, respectively; M(q; @)E~)l"Xl' is an inertia

matrix: C( q. q; @)c=:mil is a matrix funcuon

where (fJfEC2{5E(3)-m"'} with rPf,EC{5E

(3) - m') are the natural constraints resulting

from the geometric characteristics of task configu­

rations. The gripper motion restrictions described

in (7) are called holonomic (differentiable­

integrable) constraints in the literature. (khatib,

1987;Yoshikawa, I987;McClamroch, et. al., 1988)

On the other hand, in order to specify the desired

motion of the end-effector, a set of t n - m)

mutually independent artificial constraints are

also introduced as(Mason, 1981;Raibert, et. al.,

1981;Khatib, 1987;Yoshikawa, 1987)

(fJp(p) = ['PPl(P)"''Pp(n-",)(P)] T (8)

with (fJpE C 2 { 5E(3) - ~wn-",)}, such that the

constraint surface variables «(fJf and (fJp), which

are subsets in space mil, are mutually independent

and at least twice differentiable functions with

respect to q.

Using the Euler-Lagrange's formulation, the

constrained rohot dynamics can be expressed as

(3)

(5)

{J)y i
-Wx

o
o\l= [wx] =[ ~z

-Wy Wx

r
O - S a CiiCa j

W(IJf)= 0 Ca CpSa

I 0 -s/!

where the kinematic degeneracy (or singularity) is

likely to occur at det( W) =0 in which W is rank

deficient. In this study, W is assumed a nonsin­

gular matrix over any IJf of interest so that a

singular point is eliminated. Then it is known

that RU)=\l«(jj)R or \l«(jj)=RR T, where the

skew-symmetric matrix function \l is given by

. . .
IS given In a unique manner as

p=h(q)
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( 13)

denoting the centripetal and Corio lis effects; G
(q; @JEI)lIl is the vector containing gravitational

torques; TE:~}ln is the control input vector; T,
Emil represents the vector of the contact forces

between the end-effector and the external objects,

and its functional structure will be specified later.

And all robot parameters, such as link lengths,

link masses, and moments of inertia, are lumped

together into a parameter vector @ E:~W·.

It is well known that the system dynamics (9)

with all revolute-type joints satisfies the following

fundamental properties.( Ortega, et. al.. 1989;

Reed, et. al., 1989; Sadegh, et. al., 1990)

[P I] : M is a symmetric and positive-definite

matrix. i.e., M = M T > O. Furthermore, M and

Mo,! are uniformly bounded above and below, for

example,

Amin(M)E S M sAmaxUJnE, 'v' t«. @)

with Amaxuln < =
[P2] : (ill - 2C) is a skew-symmetric matrix

with a suitable definition of C, and the matrix C

is upper-bounded by II CII sail q II, where (,,( >0) is

a scalar constant.

[P3] : A part of the dynamic structure (9) is

linear in terms of a suitably defined set of the

dynamic parameters,

M(q; @)z+C(q, q; @lx+G(q; @)

= Y(q, q, x, z)@

where Y E:m nxs is a regressor matrix which

depends on the known functions of (q, q, x, z )
Emil; @ is the vector of unknown system parame­

ters of interest.

2.2 A new system dynamics and problem

formulation

This subsection addresses an efficient approach

to the problems of converting the joint-space

model to the task-space one. First, the subvectors

([}f and ([), are combined to generate a complete

set of the generalized position vector in II. as

( 10)

where x-> ([}f(P) and Xp= (]Jp(p) , with x/E.~~Hm

and X'pE: ffi(Il, m). In this formulation, the natural

constraints are orthogonal to the artificial con­

straints, Thus the n-dimensional task space can

be split into two mutually orthogonal subspaces ;

the m-dimensional contact force subspace and the

(11- m)-dimensional position subspace. Then the

corresponding velocity vector can be obtained by

(II)

with Jq;= [J/JI/J TE:))1nxl1, where some vectors

and matrices are given by

J, = O([}f/opE:))1mxl1, with

[o<Pf';oplTE:m nx
! (i=l, .... m)

J p=o([}p/opE:))1(I1-m 1xl1, with

[o<ppjop]TE:W Xl (i=I, "', II-m)

in which the matrix J« is the constraint Jocobian

transformation. As the constraint equations are

mutually independent, the non-square sub­

matrices If and .II' have maximal ranks (or full

row ranks) over any p, i.e., rk(Jf)=m and rl?
(.11') ,=( 11- m), respectively. And a vector [O<PfJ
opJT specifies the orthogonal direction to the

local surface at p, that is [o<prJopJ e v=O, with

xp=Jpv. Clearly, the motion vector v lies in the

null space of the vector space spanned by {[O<Pfl/
opJ T. "', [O<Pfm/OPJ1}. It is especially important

to note that the row vectors of If and J p span the

normal subspace and its orthogonal complement

subspace in m", respectively. As a result, the

following orthogonality condition holds:

JpeJ/
=O(lI-m)xm or J, • .JpT=Omx(11 ,m) (12)

This is equivalent to

[o<pp,/opJ. [O<PfJOp]1=O or

~O<PfJOpJ e [o<ppjop]7=O

which also implies that rs(J/h:; ns(Jp ) or rs

(JI/) c:: ns(Jr)· Since rs(J/) and rs(J/) are the

orthogonal complement of each other in the

II-dimensional vector space ([1), the constraint

space can be decomposed into a direct sum (EB) of

two subspaces as

m/~_ rs(J/)ffirs(J/), with

IS(J/) i"i rs(J/)=c {Of

Thus the dimension of the vector space (U) is

given by

II ,= dim {rS(JI/)(f)rs(J/ll

= dim { rs(Jp")} + dim! n(J/)}
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As a consequence, the constraint frame has the

following set of vectors as its basis

(18)

(19)

(20)

(21)

From Eqs. (6) and (I I), we have

Xc=Jcq

Xc=jcq+Jcij

where the elastic passive environment can gener­

ate the reaction forces along the normal directions

only. In addition, a wrench and a twist are recip­

rocal, i.e., Fp • vT=O. By the principle of virtual

work, the contact forces can be written in the

joint-space as

Tc=JuTFp=.IgTf

Therefore, the joint space dynamics (9) can be

rewritten in a set of mixed differential and alge­

braic equations (OAEs)

Mij+ Cq+ G +J.QTf= T

Q(q)=Om

where J e( =JgJvEmnxn) has a full rank. The

corresponding joint-space variables are given as

q<J;-I XC (22)

ij=Jc-1Xc+ jc-1Xc (23)

where the fact that jc-1= -Jc-1jc.!c- 1 has been

utilized (see Appendix A for the proof). After

substituting Eqs. (22) and (23) into (19) and

permultiplying both sides of the resultant equa­

tion by J e - T , we obtain

Mc(Xc; 6)Xc+ Cc(Xco Xc; 6)Xc
+ Gc(Xc; 6)+Jc- TJgTf=F (24)

vectors to the contact surface. In fact, the contact

forces can be computed by either a wrist-mounted

force/torque sensor or the position error measure­

ment in the contact surface. The generalized con­

tact forces (or wrenches) corresponding to exter­

nal constraints with the assumption of frictionless

contact can be expressed in the operational space

as

where

lJ;[c=.Ic-™.lc-1
Cc=Jc-TC.lc-I +Jc-Tsu..:
G c=.Ic- TG

F=Jc'TT

For the sake of further analysis, the identity

matrix can be partitioned such that

e.;:« LEf : Ep ]

( 15)

( 16)

Q(q)=Om

where Q=l]Jf(h(q)):C2( ffi" ---+ ffim). Then the

velocity constraint equation can be obtained as

then the n-dimensional constraint space has a set

of unit vectors given above as its new basis.

Now, combining Eqs. (5) and (7) yields

{ [O¢fj 0p] T (i = I, "', 111) ;

[o<pp)op]T(j=l, "', n~111)} (14)

By virtue of the above results. the rs(J/)

specifies the motion-controlled subspace, while

the rs(.I/) represents the contact force subspace.

Furthermore, we can also define a set of new

vectors by normalizing the row spaces of .If and

J p , namely

{ [O¢fj opJ/llo¢fJ opll(i = l , "', m) ;

[o<pp)op]/llo<pp)opll(j=I, "', n-m))

where .Ig( =JfJvE~)lmxl1) is the constraint

Jocobian with a full row rank. As a result. the

geometric constraints imposed on the robot end­

effector can be considered as restricting its joint­

space motion to the following constraint manifold
only;

QM={(q, q)Effin: Q(q)=Om, Jgq=Om}

As we shall see later, this condition leads to the

dimension reduction of the system, that is, the

overall system has only (n - m) OOF of mobility.

In case of a non-rigid (or soft) contact, the

constraint forces (fE'iR m) are given by

where xraEmm indicates the actual end-effector
position, which is aligned with the normal direc­

tion; Xf is the undeformed reference position of

the environment; and the matrix k s represents

the i.m X m) equivalent stiffness with rk( k s ) = m.
And assuming that the external environment is

homogeneous, k s can be chosen as a positive­

definite matrix, i.e., k,=diagL!'sl' "', ksm], where
ks ' ( >0) represents the stiffness along dimension

i, and a base of rs( k s ) denotes the orthogonal



A Unified Dynamic Model and Control Synthesis for Robotic Manipulators with->. 209

3. Design of a Hybrid Control
Algorithm

Before controller design, a number of tracking

error vectors are defined as follows. The position

(or motion) tracking error vector ep is given by

where xp,;E~w"-ml is the vector of the desired

position trajectories. The constraint force track­

ing errors are defi ned as

(26)

where fdE\)lm is the desired contact force vector;

e, 0::::H m is the vector of the accumulated force

errors (or momentum signals). The reference

position/force tracking error vector, XcrE:R", is

defined as

matrix.

In the subsequent section, assuming that the

desired state variables (XPd, .-i: jJdX Pd, fd) to be

tracked are all continuous and bounded func­

tions, a hybrid (position/force) controller is for­

mulated.

McLYe; eL¥e+ C,eYe> Xc; eLY,
+ Ge(Xc; (.:)) +- E,f=F
x,=O (25)

where Xc=Epxp. It should be noted that the

constraints equations as well as the constraint

forces are expressed in simple forms under the

new coordinate system. The motion of the entire

system is actually governed by the independent

variables x; (i.e.. a minimal-order governing

equation by the tangent motion xp). Now, the

position- and force-controlled subsystems can be

readily decoupled, that is,

E f= [E mO] T, ErE';R,,,m
E p= [OE1(n-mlx(n--nZl]

T, EpEf]f,xln-m)

with E/Ef=O and E/Ef=Emxm' Using the
identity J,- TJ,/ = E.r, the robot dynamics with

holonomic constraints can be finally written in

the constraint-space as

where

F; = e;1IJI!cE"x; +E/CErhl:p+ E/G,
FI= E/llifcEpxp-1- E/CEp.l:r, + E./Ge

+f
Xr=O

limp(f) =0 if and only if
1-00

f
, +e

lim p( ddr=O for all 0< c ~ C,
I ~(X.. t

Proof: See Refs. (Sadegh, et. al., 1990;You,

1994) for more details.

Let e(f) = 8(f) - e be the parameter error

vector, where 8(tl denotes the current estimates

(29)

(28)XeT = [ e.:xp/] T

with XfT = h-e, and xpr = X Pd -- kpep, where the

gain matrices can be selected as positive-definite,

that is, kr,=kpE(f;;p >0), and kF=,hE(f;;F >0).
The sliding variable vector, X esEm", is defined as

with xfs=-kFeF and xps=i!p+kpep. It is

worth noting that Xfr and XiS are always orth­

ogonal to XPT and Xr,s, respectively. Actually,

they are the orthogonal complement vectors each

other in ~W'.

Lemma: Let p( t) : 31+ -+ mn be a uniformly

continuous functions, then for any co> 0,

Consequently, the first subsystem represents the

reduced-order equations of motion which con­

tains no contact forces (i.e., purely kinetic differ­

ential equations), while the other subsystem is

used to regulate the generalized contact forces.

Some essential properties of the transformed

dynamics (25) are summarized as follows: (Han,

et. al., 1990; Carelli, et. al., 1990; Fossen, et, al.,

1991; You, 1994; Sastry, et. aI., 1989)

[P I] : ,Ue is a symmetric positive-definite

matrix. Moreover, both Me and Mc-l are uniform­

ly bounded above and below.

[P2] : lYe = U~fc - 2Cel is a skew-symmetric

matrix.

Proof: See Appendix B for the proof.

[P3] : A part of the dynamics (25) IS still

linear in terms of suitably selected set of the

parameter vector (e E::~W), namely,

M,.(Xe ; elz+ C,(Xc, Xc; elx
+ G,.(Xe ; (~)= Y,(Xn "Ye, x, z)e

where x and z(:==:R"; YeEm nxr is a regressor
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(34)
of 8. In this paper, the circumflex ( 6) represents

the adaptive estimates of ( 0) and the correspond­

ing estimation error (6)=( 6)-( 0). Utilizing

[P3] in (25), we also define the following func­

tions:

!Jfc(Xc; 8)Xcr+ Cc(X" .¥e; 8L\'c,
I- Gc(Xc; 8)

= Yc(X, Xc, Xcn Xcr)&J (30)

"~lc(Xc; 8)Xer+ C\.(X" Xc; 8L¥er
I-Gc(X; 8)

= Yc( Xc, .¥" -"¥en "'fer) 8 (3 I )

where YcE~)rlXr is a regressor matrix which is no

longer a function of i; p(or Xc),
The design objective is to determine a set of

control torques so that the actual system

responses of interest (x,,, f) simultaneously track

the reference (or desired) values (Xt"i' f d ) as

closely as possible. Consider the following hybrid

control algorithm for the robot model containing

closed-chain mechanism,

F= Yc(Xc, X" Xcr, X,)e;)- KX,
+ E.r(fd-+- kteF) (32)

where K and kt are positive-definite gam

matrices with appropriate dimensions, for exam­

ple, kt=krE(k.r>O). Then the adaptation mecha­

nism (Reed, et. al., 1989) is chosen as

(33)

where V( = u: >0) is an adaptation gain matrix,

and the term 6( 0 ) : mr
--- R + is selected as

~) {O, 11811-S:80
6(8 = 60- 1181[?-80

where the constants (Jo( >0) and 8o( > II 811> 0)

are some design parameters. Note that 6 is adopt­

ed to ensure the robustness of the adaptive algor­

ithm in the presence of uncertainties. Since the

control input vector F is viewed as the hypotheti­

cal force acting on the constraint space, the gener­

alized contact forces are eventually converted to

the joint torques by T==J/F. An overall control

scheme is shown in Fig. 3.

After substituting the control law (32) with

(33) into Eq. (25) and subtracting (30) on the

both sides of the resulting equation, we obtain the

closed-loop error dynamics as

1110 ¥ (8== - CcXes+ Ye8- KXcs
-+- E,(e.r+ kteF) (35)

Now the stability and the tracking properties of

the closed-loop system are analyzed in the follow­

ing.

Theorem: Provided that some or all robot

parameters (('il) in (25) are unknown, then the

closed-loop system (35) with the control law (32)

is globally stable in the sense that the responses of

some state variables will be zero asymptotically,

namely

x s-:: XPd and f -~ f d as t -~ CX)

and the parameter estimation errors 8 are ulti­

mately bounded.

Proof: Define a Lyapunov function candidate,

v .«, X)E~)T+xm(Il'III'rJ_+~W, by

q,q
f+---ForwardKinematics and

Nonlinear Transformation

Desired motions1
and forces

------------------
Fig. 3 Block diagram of hybrid control system
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which can he rewritten as

I'nlin(/()1°OIIXesI12dt + !cjkFl°OlieFfdl
o 0

S; Vo~ lim V S; Vc,
'-00

where X==[Xc/e/EF] 7 and Q,~Block diag

]M" hF , U]. By using Rayleigh's principle and

noting that the matrices Me' hi, and U are all

positive-definite, we obtain

this result shows that lim e- ---+ 0 and limt e p
t ...oo t~oo

This paper has presented a unified formulation

to the dynamic model and the hybrid control for

the constrained robotic manipulator over known

contact surfaces. The compact mathematical

model has been given in terms of the constraint

surface variables. The constraint frame is set up as

a direct sum of the force-controlled subspace and

(purely kinetic) position-controlled subspace in

which the position and force DOF are specified

on the tangential and normal directions, respec­

tively. Based on the new reduced dynamic model,

a hybrid control algorithm is synthesized, that is,

the generalized positions and the contact forces

are simultaneously regulated in two orthogonal

directions. A rigorous stability analysis of the

closed-loop systems has been given by a

Lyapunov method. Further, it has been shown

that the 'proposed control law guarantees

asymptotic stability of the position tracking errors

as well as the contact force errors.

hpep) ---+ 0, which in turn implies that

e/l( t)= cp( lo)exp [ - kp( I ~ 10J with

IIp/t( 1,,)11:" 0."), and fer( t tdr ---+ 0

Hence, it can be concluded that ep ---+ 0 and e,

..... 0 (by Lemma) as t ..... co. Furthermore, the

uniform continuity of the signals e» also leads to

limep~=O.(You, 1994)
f·.,.,,-

4. Conclusions

(36 )

with ,1m;n( Q) > O. Thus the scalar function V is a

positive-definite. Computing the time derivative

of V leads to

~> = Xe/ [. eXes +- YeA··· /(X,S
+Ej (er'; hjeF)] + (J /2) XcsTJfcX s
-t- kFe:.Tei> f:)rUe (37)

Thus, V S; Vi,=c VI~o( ) < CD, 'If t :20, is lower

bounded by zero. From (36) and (38), it can be

seen that VEeLc; and accordingly XesEe Ls; er fCC:

L~, and eEeLoo' In addition, from (38),

V", - XesTKXcs + .¥e/Er( e, + h.e»)J
+hrc/c/' 0(9 7(9

where [P2] in (25) and e 6 (assuming g-O)

ha ve been conveniently exploited. By noting the

fact that x.rt: x.;' and oe T E) :20 (see Appen­

dix C for the proof), it follows that

~> S; ' . •¥c/KXes~' kFCr' (er+ kjCF)
-+ kl.c/er

S; .. X,/KXCS"!cF!?jeFTer
S; .. /imin(K)IIXcsI1 2 " !,Fkj lleFI12s; 0 (38)

which implies that X cs EC L 2 and erEeL.. On the

other hand, due to the fact (Han, et. al., 1990) that

II e,ll s; Ilepll, the constraint force tracking errors

(e l ) also remain bounded. In fact, the external

environment can be regarded as a passive mecha­

nism, thus it only provides a finite amount of

energy. Based on this observation. r is reasonably

assumed to be bounded as function "f time.

Consequently, the matrix Fe call be readily

shown to be hounded too. And from (35) and the

above results, one obtain XcsCc L" and XcsE" L:
Leo Using Barbalats Lemma, (You, 1994;Sas·

try, er. al., 1989) we get limXcs'" O. Evidently,
f -(-.,
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Appendix

Appendix A
Proof of jc-l=~_-Jc-ljcJc-l:

Noting that JcJc-1=E, we obtain

+Jcj c- 1 =0. Thus it is clear that
--Jc-1jcJc- 1.

Appendix B

Proof of [P2J in Eq. (25) :

Assuming that Nc is a skew-symmetric,

that .eNcx=O, xEffill. Hence, set

x T1Yc .e= .e C,% (Jc-TiWJc- 1
)

- 2(Jc -T L'Jc-1-Jc' TMJc- 1j(Jcl)J.~

c= x TJ: T (i'1. -·2 ClJ,,-l.'f

Since the matrix LM - 2 C) is a skew-symmetric,

we have Z TUII.-2ClZ=O, with Z=Jc-1x.
Therefore, we conclude that the matrix Nc is also

a skew-symmetric.

Appendix C

Proof of d!iT8? 0: To begin, we note that

(J8 T8 = (J( 8 T- 8 T)8 = (J(II 811 2
- (

7 8 )

? 611811(11811- 8 0 + 0)0-11 ell)
Note also that (J11811(11811-80)?0 and 80?11811,
it follows that (J8 T8?0.


