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A Unified Dynamic Model and Control Synthesis for Robotic
Manipulators with Geometric End-Effector Constraints

Sam-Sang You*

(Received August 28, 1995)

A compact dynamic model and a hybrid position/force controller for a constrained robot

manipulator, subject to a set of holonomic (integrable) constraints have been developed in this
study. The joint-space dynamics (DAEs) has been transformed into the constraint-space model
in which the system dynamics can be readily decomposed into two orthogonal subsystems ; the
motion-controlled subsystem is specified in the direction tangential to the known constraint

surfaces, and the force-controlled subsystem is regulated in the orthogonal direction. Also

utilizing the transformed dynamics, we have presented a hybrid adaptive control law to simulta-

neously manipulate the end-effector position and the contact force. Further, by a Lyapunov
theory, it has been shown that the corresponding closed-loop system is globally stable under the

parametric uncertainties.

Key Words: Hybrid Control, Constrained Robot, Holonomic Constraints, Differentiable-
algebraic Equations (DAEs), Force-controlled (Position-controlled) Subsystem,

Contact Force, Asymptotic Stability, Closed Kinematic Chain, Tangential (Orth-

ogonal) Subspace, Lyapunov Theory

Nomenclature — - - — — — « —

Symbols written in bold type denote vectors or
matrices, while scalars are written normally :

i . A set of non-negative real number ;
Rt =[0, +co0)

D : The j-dimensional vector space
with real elements 9

R A set of all real-valued (nx< m)
matrices

sup : The supremum, the least upper
bound

[l x| : The Euclidean norm of a vector x ;
x| =[x x]"% VXxER

A >0(<0) : A positive(negative) definite matrix
A

Amax( A) : The maximum eigenvalue of matrix

A Amax(A): max{/‘t,(A)}, where
2:(A) 1s the ; th cigenvalue of
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1. Introduction

During the last decade, there has been consider-
able research on the motion control of uncon-
strained robot manipulators whose end-effector
do not significantly contact with the external
environment.(Ortega, et. al., 1989 : Reed, et. al,,
1989 ; Sadegh, et. al, 1990) In general, these
methods are mainly concerned with a pure posi-
tion control. However, practical applications of
such a system to higher level tasks are severely
limited due to its performance. For example, in
the execution of the advanced tasks involved in
flexible manufacturing systems, such as machin-
ing tasks (grinding, deburring, polishing, etc.),
assembly operations, and various material handl-
ing, the motion of the robot end-effector is
kinematically constrained in some directions. A
constrained robotic system, which forms closed
kinematic chains, provides higher flexibility and
dexterity in performing complex tasks. In these
cases, a position control alone could lead to
excessive contact forces or loss of contact with
external environments. Therefore, to greatly
enhance system performance, it is necessary to
control both the position of the end-effector and
the contact forces exerted by the end-effector on
the environment.

For facilitating the dynamic analysis and the
control synthesis, the proper mathematical model
of such a system should be first formulated. The
dynamics of the constrained robot system was
discussed in references.(Mason, 1981 ; Raibert, et.
al., 1981 ; Khatib, 1987) Unfortunately, none has
employed a unified framework. Among the vari-
ous approaches to the hybrid control architecture,
the impedance control and the position/force
control have been extensively suggested in the
literature. In the hybrid position/force control,
the position/force can be directly controlled to
achieve accurate tracking performance. In the
impedance control approach,(Hogan, 1985;
Kazerooni, et. al., 1986 ; Wen, et. al., 1991) the

external environment is modeled as a mechanical
impedance to produce compliant motion, and
thus the contact force is manipulated indirectly as
a result of the position control. Mason(Mason,
1981) identified the task constraints represented
by natural and artificial constraints. Based on the
decomposition of the task space, Raibert and
Craig(Ratbert, et. al.,, 1981) suggested a hybrid
controller. And without parametric uncertainties
in the robotic model, a class of hybrid control
strategies have been proposed, for example,
studies by Yoshikawa(Yoshikawa, 1987) and
Mcclamroch and Wang.(McClamroch, et. al.,
1988) From a practical point of view, any dynam-
ical system contains various system uncertainties.
This problem motivates the adaptive control
approach. Although several hybrid adaptive con-
trol schemes for robot manipulators have been
suggested to date,(Han, et. al., 1990 ; Carelli, et.
al., 1990 ; Fossen, et. al., 1991) more studies need
to be conducted to ascertain the global stability of
the control system, which simultaneously guaran-
tees the asymptotic stability of the end-effector
positions and the contact forces.

The primary aim of this research is to provide
a compact approach to dynamics formulation and
control synthesis for the robotic manipulator with
closed kinematic chain. The first task is to trans-
forms the joint-space dynamics (DAEs) into the
constraint-space model. The constraint frame is
set up as a direct sum of the position-controlled
subspace and the force-controlled subspace ; the
position subspace spanned by tangential vectors
and the force subspace generated by normal
vectors. Next, based on the new dynamic model,
we present a hybrid impedance controller guar-
anteeing the global stability of the closed-loop
system. The generalized positions and the contact
forces of the gripper are simultaneously regulated
in two orthogonal directions ; the position con-
trol in the free directions and the force control in
the constrained directions. Therefore, it is shown
that the robot system can be globally stabilized by
the proposed control algorithm.

The rest of this paper is organized as follows.
First, the system dynamics and problem formula-
tion will be addressed in Sec. 2. After that, a
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hybrid adaptive control law is introduced in Sec.
3. Finally, the conclusions are given in Sec. 4.

2. System Dynamics and Problem

Formulation
2.1 Preliminaries and the joint-space
dynamics

This section provides a unified formulation for
the kinematics and the dynamics of physically
constrained robot manipulators. Consider the
robotic system interacting with external objects,
as shown in Fig. 1. In order to describe the
kinematic and dynamic relationships among the
components of the closed chain mechanism, a set
of coordinate systems are defined as follows :
I-{76—"x"y"z} is the reference (or absolute)
coordinate system; /7,{°%0—“x°y°z} is the end-
effector frame; J7.{‘0—°x°y°z} is the constraint
coordinate system.

In what follows, the concept of a configuration
manifold will be briefly discussed. First, consider
an unconstrained motion of a robotic mechanism
whose joint position vector is denoted by g&R”.
Let p=[rT¥7]TeR" (o< n) be a generalized
position vector of the end-effector with respect to
I1,, which is consists of the Cartesian position
vector r and the vector ¥=[qgpBy]” associated
with the three Euler parameters. For representing
arbitrary positions and orientations, p is typically

Fig. 1 Schematic diagram of a constrained robot

system

chosen as a 6-dimensional manifold. Throughout
the study, we consider the nonredundant robotic
manipulator, i.e., 3,= n(taking n,=6). As shown
pictorially in Fig. 2, the rotational motion can be
described by the three Euler angles. More specift-
cally, the Euler angles are specified in terms of the
images of the three parameters(q, 3. y) obtained
by performing three elementary rotations of the
body-attached frame /7, with respect to the fixed
frame [7, in a right-handed sense, that is, rotating
@ angle about the z axis, then 3 angle about the
new y axis, and finally y angle about the new x
axis. Then the resulting overall transformation is
given in a 3 x 3 matrix as

CaCs CaSpSy— SaCy CaSaCrt SaSy
R= 5aCs SaSasSyt CaCy SaSsCy— Casy | (1)

— 8z CaSy CpCy

where for convenience, c,=cos(a), ss=sin(S),
and ¢,=cos(y), and so on. Thus the orthogonal
rotation matrix R maps the vectors from /], into
I1,. For the present study, the Euclidean motion
of a rigid body (or frame) in a three-dimensional
workspace can be specified by(you, 1994)

(r. R)ER X SO(3)=SE(3)
where the Special Orthogonal group of order 3,

which is denoted by the Lie group SO3W T R*3),
represents a set (or a group) of all proper 3x3

T3 p, B
a >

»\°x  End-effector

Fig. 2 Geometrical representation of Euler angles
(yaw, pitch, and roll)
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rotational matrices on h*® and is a three-
dimensional submanifold of %®. And SO(3) can
be formally defined as

SOB)={RER¥*: det(R)=+1, R'R
=RR"=FEs.s}

Consequently, the Special Euclidean group
denoted by S£(3) with dimension 6 can be con-
sidered as the configuration space for rigid
bodtes.

Now, @g<=R® denotes the angular velocity
vector of the frame [7, with respect to /],, and the
time derivative of the orientation vector is called
the Euler rates (#). Then the kinematic relation-
ship between the angular velocity and the rates of
Euler angles is given as

al)=wiu (2)
in which the matrix W&R®*? is defined as
0 —Se C3Ca
0 ¢o csse (3)
1 0 —g

W(y)=

where the kinematic degeneracy (or singularity) is
likely to occur at det(W)=0 in which W is rank
deficient. In this study, W is assumed a nonsin-
gular matrix over any ¥ of interest so that a
singular point is eliminated. Then it is known
that R(1)=V(@)R or V(&)=RR', where the
skew-symmetric matrix function V is given by

0 Wz Wy
V=[ax]=| w: 0 —wx
—wy wy O

where @=col(wx wy w.); thus V={V&H"*:
Vi=—V}, with V= 50(3)CR®3. With the defini-
tion given above, the generalized velocity vectors
(or twists) are related as

v==S(p)p, with p=(r, R)ESE(3)

n=>06 (4)

where p—[ #7G7]TEN and p—[ 7 1G] S,

with S:[ By 03 }e?}{‘”f’. Clearly, S is also a
343

nonsingular matrix. Then the forward kinematics
is given in a unique manner as

p=hiq) (5)
where A(0):R* — Ror SE3), n=06) repre-

sents a mapping from the joint space to the end-
effector space. And this transformation is continu-
ous, invertible, and twice differentiable with
respect to g (that is, a C? or often smooth func-
tion (). By chain rule of differentiation, the

velocity relation is then given by

v=J,q (6)
with J,=SJ and J=09h/dq, where J,&R" " is
the standard Jacobian with a full rank, and a
unique inverse mapping exists if J, is a nonsin-
gular matrix with a maximal rank.

If a set of (< n) time-varying hypersurfaces
are imposed on the end-effector by external con-
straint surfaces, then its algebraic equation can be
expressed as

Q,(p)= [s[)n(P)'“Qbfm(p)] T=0, or

GAp)Y=0, (71=1, -, m) (7
where @,<= C?*{ SE(3) —> Q") with ¢, C*{SE
(3) —» N} are the natural constraints resulting
from the geometric characteristics of task configu-
rations. The gripper motion restrictions described
in (7) are called holonomic (differentiable-
integrable) constraints in the literature. (khatib,
1987:Y oshikawa, 1987:McClamroch, et. al., 1988)
On the other hand, in order to specify the desired
motion of the end-effector, a set of (x—m)
mutually independent artificial constraints are
also introduced as(Mason, 1981;Raibert, et. al,,
1981;Khatib, 1987;Y oshikawa, 1987)

Op(p)= [¢7p1(p)"'§0p<n—m)(p)] T (8)

with @, C*{ SE(3)— R""™}, such that the
constraint surface variables (@, and @,), which
are subsets in space §”*, are mutually independent
and at least twice differentiable functions with
respect to q.

Using the Euler-Lagrange’s formulation, the
constrained robot dynamics can be expressed as

M(g;®)g-+Clq. ¢:0) ¢+ Glg; O)
4+ To=T, Vt=0 with @,(p)=0n
and p=h{q) %)

where ¢. ¢. and g < W” are the vectors represent-
ing the joint positions, velocities, and accelera-
tions, respectively ; M{(q; @)=R**" is an inertia
matrix ; Clqg. ¢; @)e&N"" is a matrix function
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denoting the centripetal and Coriolis effects ;
(g ; ®)=NR" is the vector containing gravitational
torques ; TER" is the control input vector; T.
&R” represents the vector of the contact forces
between the end-effector and the external objects,
and its functional structure will be specified later.
And all robot parameters, such as link lengths,
link masses, and moments of inertia, are lumped
together into a parameter vector ®&R'.

1t is well known that the system dynamics (9)
with all revolute-type joints satisfies the following
fundamental properties.(Ortega, et. al. 1989,
Reed, et. al, 1989 ; Sadegh, et. al., 1990)

[P1]: M is a symmetric and positive-definite
matrix, i.e., M=M7">(. Furthermore, M and
M ! are uniformly bounded above and below, for
example,

Aminl MVE < M < M)E, V{q. ©)
with A (M) < co

[P2]: (M—2C) is a skew-symmetric matrix
with a suitable definition of €, and the matrix C
is upper-bounded by | C|| < ¢ ¢, where «{ >0) is
a scalar constant.

[P3]: A part of the dynamic structure (9) is
linear in terms of a suitably defined set of the

dynamic parameters,

Mig:@)z+Clq, ¢;O)x+G(g: @)
=Y(q. ¢, x: 2)0
where Y ENR"™*® is a regressor matrix which
depends on the known functions of (¢, ¢, x, z)
&R*; @ is the vector of unknown system parame-
ters of interest.

22 A new system dynamics and problem
formulation
This subsection addresses an efficient approach
to the problems of converting the joint-space
model to the task-space one. First, the subvectors
@, and @, are combined to gencrate a complete
set of the generalized position vector in /] as
Xe=[x,%," 17, Xe&=N" (10)
where x,=@,(p) and x,= D, p) , with x, 1"
and x,=H"" ™). In this formulation, the natural

constraints are orthogonal to the artificial con-
straints. Thus the gx-dimensional task space can

be split into two mutually orthogonal subspaces ;
the su-dimensional contact force subspace and the
(#— m)-dimensional position subspace. Then the
corresponding velocity vector can be obtained by

Xe=Jov (11)

with Jo=[J, J,"]T&R"", where some vectors
and matrices are given by

J,=00,/dpsR™ ", with
[6¢:/0p]TER (=1, -, m)
Jo =00,/ dpER" ", with

[0ppi/Op]TER (i=1, =, n—m)

in which the matrix J, is the constraint Jocobian
transformation. As the constraint equations are
mutually independent, the non-square sub-
matrices J, and J, have maximal ranks (or full
row ranks) over any p, ie.. »&(J;)=m and yk
(J,)=(n—m), respectively. And a vector [d¢ ./
apl” specifies the orthogonal direction to the
local surface at p, that is [ 3¢ ,./op] ® v==0, with
Xp=J,0. Clearly, the motion vector p lies in the
null space of the vector space spanned by {[ 3¢,/
opl’, . [0¢m/op]"}. It is especially important
to note that the row vectors of J, and J, span the
normal subspace and its orthogonal complement
subspace in R”, respectively. As a result, the

following orthogonality condition holds :

JreJ/
:Omfm)xm or Jj..IpT:Omx(nA-m) (12)

This is equivalent to

[0,/ 0p] @ [8¢,:/0p]) =0 or
[0ps/0p) @ [6pp;/dp]T =0

which also implies that »s(J/7) S us(Jp) or »s
(JoT) € ns(J,). Since vs(J,/7) and »5(J,") are the
orthogonal complement of each other in the
n-dimensional vector space (({/), the constraint
space can be decomposed into a direct sum (p) of
two subspaces as

N (P s, with
(I rs(J,7)y =210} (13)
Thus the dimension of the vector space ({J) is
given by
n=dim{ rs(J )P rs(J7)}
=dim! rs(J )+ dim ! vs(J7) )
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As a consequence, the constraint frame has the
following set of vectors as its basis

{L0ds/op]l"(i=1. -, m);
[O¢p;/oplT(G=1, -, n—m)} (14)
Bv virtue of the above results, the (J,7)
specifies the motion-controlled subspace, while
the »s(.J,7) represents the contact force subspace.
Furthermore, we can also define a set of new
vectors by normalizing the row spaces of J, and
J», namely
{000/ 0p1 /06 / opll(i=1, - m);
[0¢ri/dp)/ 00w/ D=1, -, n—m))
then the j;-dimensional constraint space has a set
of unit vectors given above as its new basis.
Now, combining Egs. (5) and (7) yields
Q(g)=0, (15)
where Q=@ (h(q)) : CX(R"— R"). Then the
velocity constraint equation can be obtained as
Jo=Jog=0, (16)

JQ(:JJ‘JUETH”IX)Z) iS the
Jocobian with a full row rank. As a result, the

where constraint
geometric constraints imposed on the robot end-
effector can be considered as restricting its joint-
space motion to the following constraint manifold
only;
Qu=1{(q. )ER": 2g)=0n Jog=0,}
As we shall see later, this condition leads to the
dimension reduction of the system, that is, the
overall system has only (5 — ) DOF of mobility.
In case of a non-rigid (or soft) contact, the
constraint forces (£f<NR™) are given by

f_{om if Xra< Xy
ks(.’Cfa‘“Xf) if X Xr

(17

where x,, 90" indicates the actual end-effector
position, which is aligned with the normal direc-
tion; x, is the undeformed reference position of
the environment; and the matrix k, represents
the (2 X ) equivalent stiffness with 34( k)= m.
And assuming that the external environment is
homogeneous, kb, can be chosen as a positive-
definite matrix, i.e., by=diag [ ks s ksm ], Where
ks:( >0) represents the stiffness along dimension
7, and a base of y5(k) denotes the orthogonal

vectors to the contact surface. In fact, the contact
forces can be computed by either a wrist-mounted
force/torque sensor or the position error measure-
ment in the contact surface. The generalized con-
tact forces (or wrenches) corresponding to exter-
nal constraints with the assumption of frictionless
contact can be expressed in the operational space
as

Fo=Jf (18)
where the elastic passive environment can gener-
ate the reaction forces along the normal directions
only. In addition, a wrench and a twist are recip-
rocal, i.e., F, ® p”=0. By the principle of virtual
work, the contact forces can be written in the
joint-space as

T.=J, ' F,=J, f

Therefore, the joint space dynamics (9) can be

rewritten in a set of mixed differential and alge-
braic equations (DAEs)

MGg+Cg+G+JF=T

2(q)=0x (19)
From Egs. (6) and (11), we have
X.=J.g (20)

where J.(=JoJ,=R"*") has a full rank. The
corresponding joint-space variables are given as

q.:J071Xc (22)

d:Jc‘lXc+ jcngc (23)
where the fact that J,~'=—J.7'Jj.J.~' has been
utilized (see Appendix A for the proof). After
substituting Eqgs. (22) and (23) into (19) and
permultiplying both sides of the resultant equa-

tion by J.~T, we obtain

MAX.; D)X+ ClXer Xo: )Xo

+GA X O)V+HI T F=F (24)
where

M.=J "MJ."

Co=JTCI T +J "M

G=J. G

F=JT

For the sake of further analysis, the identity
matrix can be partitioned such that

Epon= LEf : Epj’
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where

Ef:[ErrnxnioJ T’ E’Ae\‘mxm

Ep:[OET(er)x(n»m)]T-, EApEm”X(ngm)
with E,E,=0 and E/ E;=Eu.n- Using the
identity J,"Jo,"=E,, the robot dynamics with
holonomic constraints can be finally written in
the constraint-space as

MAXe; O) X+ CA X,

+ GC(;Y(,‘ N @)*Eyle

x,=0 (25)
where X.= E,x,. It should be noted that the
constraints equations as well as the constraint

(o O X

forces are expressed in simple forms under the
new coordinate system. The motion of the entire
system is actually governed by the independent
variables x, (i.e., a minimal-order governing
equation by the tangent motion x,). Now, the
position- and force-controlled subsystems can be
readily decoupled, that is,

F,=E,/ M.E.%,+ E, C.Ep%o+ E)"G.

F=E ME,%,+E/ CExXp+E/G.
+f

X

Consequently, the first subsystem represents the
reduced-order equations of motion which con-
tains no contact forces (i.e., purely kinetic differ-
ential equations), while the other subsystem 1s
used to regulate the generalized contact forces.

Some essential properties of the transformed
dynamics (25) are summarized as follows : (Han,
et. al., 1990 ; Carelli, et. al., 1990 ; Fossen, et. al,,
1991 ; You, 1994 ; Sastry, et. al., 1989)

[P1]: M., i1s a symmetric positive-definite
matrix. Moreover, both M. and M.~ are uniform-
ly bounded above and below.

(P2]: Ne=(M.—2C.) is a skew-symmetric
matrix.

Proof: See Appendix B for the proof.

[P3]: A part of the dynamics (25) is still
linear in terms of suitably selected set of the
parameter vector (@< R"), namely,

MAXe; @ z+ CAXe Xos O)x
+ G Xe: @)=Y X, Xoo x. 2)O

where x and z&R": Y.€R"™" is a regressor

matrix.

In the subsequent section, assuming that the
desired state variables (x,q, XpaXpe Jfa) tO be
tracked are all continuous and bounded func-
tions, a hybrid (position/force) controller is for-
mulated.

3. Design of a Hybrid Control
Algorithm

Before controller design, a number of tracking
error vectors are defined as follows. The position
(or motion) tracking error vector e, is given by

Cp—Xp— Xpa (26)

where x,,=R""™ is the vector of the desired
position trajectories. The constraint force track-
ing errors are defined as

er == fu and e;':j:zef(f)(jf (27)

where 7,01 is the desired contact force vector ;
e &R is the vector of the accumulated force
errors (or momentum signals). The reference
position/force tracking error vector, X, SR7, is
defined as

ch'r - [ x"_frrx.t)r7 } T (28)

with X = krer and X,,= X py— kpep. Where the
gain matrices can be selected as positive-definite,
that is, kp:/pr(}f/J >0)s and kr=kp 5 (fr >0)
The sliding variable vector, X ,&R", is defined as

Xes=Xe— Xor= [xfs’rxpsrl T (29)

with x,=—hrer and x,s=é,+ kpep,. It is
worth noting that ¥, and x, are always orth-
ogonal to x,, and x,. respectively. Actually,
they are the orthogonal complement vectors each
other in ™.

Lemma : Let p(7): %" — N" be a uniformly
continuous functions, then for any ¢,>>0,

limp(#)=0 if and only if
{ oo

lim HCp(r)c/rtO for all 0< ¢ < ¢

1ot
Proof: See Refs. (Sadegh. et. al., 1990;You,
1994) for more detatls.
Let @(t)=@({)— @ be the parameter error
vector, where @(¢) denotes the current estimates
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of @. In this paper, the circumflex ( &) represents
the adaptive estimates of ( O ) and the correspond-
ing estimation error (O0)=(0)—(0). Utilizing
[P3] in (25), we also define the following func-

tions :

MAX.: O Xer+ CA Xer X3 OV X0y
+GAX:; 0)

= VA X Xo» Xers Xer)O (30)
MAX.; D Xer + CA Xow Xo: O Xer
+GAXe: O)

= Yd Xe» Xo» Xers X)O (31

where Y.& W7 is a regressor matrix which is no
longer a function of i,(or X.).

The design objective is to determine a set of
control that the system
responses of interest (x,, £) simultaneously track
the reference (or desired) values (xpq fa) s
closely as possible. Consider the following hybrid
control algorithm for the robot model containing

torques sO actual

closed-chain mechanism,

F= )7(‘(XC= X{w X(rrs X(rr)é} — KX«

+EAf,+ker) (32)

where K and k,
matrices with appropriate dimensions, for exam-
ple, B,=k.E(k;>0). Then the adaptation mecha-
nism (Reed, et. al., 1989) is chosen as

are positive-definite gain

é; U l( Y{‘TX'(,‘S_‘_ (7@) (33)

where /(= UT >0) is an adaptation gain matrix,
and the term g( O ) :R" — R* is selected as

(0, |1=6,
):[ 7

A= 4, 161> 6

where the constants g(>>0) and @ >|®|>0)

are some design parameters. Note that g is adopt-

(34)

ed to ensure the robustness of the adaptive algor-
ithm in the presence of uncertainties. Since the
control input vector F is viewed as the hypotheti-
cal force acting on the constraint space, the gener-
alized contact forces are eventually converted to
the joint torques by T ==J. F. An overall control
scheme is shown in Fig. 3.

After substituting the control law (32) with
(33) into Eq. (25) and subtracting (30) on the
both sides of the resulting equation, we obtain the
closed-loop error dynamics as

A’”u '('s = Cchs"F )719 - KXcs
—+ Er( e+ kfef)

Now the stability and the tracking properties of

(35)

the closed-loop system are analyzed in the follow-
ng.

Theorem : Provided that some or all robot
parameters (@) in (25) are unknown, then the
closed-foop system (35) with the control law (32)
is globally stable in the sense that the responses of
some state variables will be zero asymptotically,
namely

Xp— Xpg and f— f, as {-— o

and the parameter estimation errors @ are ulti-
mately bounded.

Proof: Define a Lyapunov function candidate,
Vi, X)YaEN xqe-m 7 — R by

XX, Forward Kinematics and q.4
Nonlinear Transformation |
Position Position &
‘——————) y Velocity
Controller F Sensors
£ ¥ [
SV VYS9
Motions & A
Forces in Adaptation | © | + ¥ i’ T Robot External
4 Task-space ’ Law hd Dynamics 7lEnvimnmcn
= ICH
-
i i F,
Desm_:d motions o Force /¢ Force
and forces 2 Controller Sensor
f

Fig. 3 Block diagram of hybrid control system
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V=(1/2)XTQX (36)
where X=[X."e./67 7 and @Q-=Block diag
{M.. kr, U]. By using Rayleigh’s principle and
noting that the matrices M.. k., and [/ are all
positive-definite, we obtain

/2D Amin @ X = V< (172 A0 (DX
with Apia(Q) >0. Thus the scalar function |/ is a
positive-definite. Computing the time derivative
of IV leads to

L"f—“‘YCsT lr - Cqus‘ + }_/((5 o Iﬁ:Y.*s

+E e+ kier)] (/D) X Mo X
+kresle, + OTUO (37
which can be rewritten as

‘/.f = ‘YCSTK‘Xycs + 4Y(‘37Evf( e _+ k_,fel*' )j

+hier’e, 06O
where [P2] in (25) and @~ @ (assuming ©--0)
have been conveniently exploited. By noting the
fact that X.,"E, = x,.) and 66O7é 20 (see Appen-
dix C for the proof), it follows that

V<~ X' KXes— krer' (es+ koer)
+ freiler

- XK Xos— keksed er
il KO Xesl? ~ kekerles)? <0

l//\

A

/

(38)

Thus, V< V= V,.o(0)< 00, ¥V¢=0, is lower
bounded by zero. From (36) and (38), it can be
seen that V& [... and accordingly X & .., er =
L., and @< L. In addition, from (38).

S K f VX eellZelt + ook / “lel2dl
<WV—1IimV<

t oo

which implies that X <= [, and e & [,. On the
other hand, due to the fact (Han, et. al., 1990) that
led <l|les|. the constraint force tracking errors
(e,) also remain bounded. In fact, the external
environment can be regarded as a passive mecha-
nism, thus it only provides a finite amount of
energy. Based on this ohservation. f°is reasonably
assumed to be bounded as function of ume.
Consequently, the matrix ¥, can be readily
shown to be bounded too. And from (35) and the
above results, one obtain X, /.. and Xt /..,
Lo Using Barbalat’s Lemma, (You, 1994;Sas-
try. et. al., 1989) we get lfim)((.s—» 0. Evidently,

this result shows that limer, — 0 and lim(eé,
t o0 t—oo
- kpep) -— 0, which in turn implies that
es(1)=epty)expl — kp(1—ty] with

le (6)] < oo, and fedr)dr — 0

Hence, it can be concluded that ¢, — 0 and ¢,
—( (by Lemma) as ¢t-— oo. Furthermore, the
uniform continuity of the signals e, also leads to
lfig) ¢,==0.(You, 1994)

4. Conclusions

This paper has presented a unified formulation
to the dynamic model and the hybrid control for
the constrained robotic manipulator over known
contact surfaces. The compact mathematical
model has been given in terms of the constraint
surface variables. The constraint frame is set up as
a direct sum of the force-controlled subspace and
(purely kinetic) position-controlled subspace in
which the position and force DOF are specified
on the tangential and normal directions, respec-
tively. Based on the new reduced dynamic model,
a hybrid control algorithm is synthesized, that is,
the generalized positions and the contact forces
are simultaneously regulated in two orthogonal
directions. A rigorous stability analysis of the
closed-loop systems has been given by a
Lyapunov method. Further, it has been shown
that the ‘proposed control law guarantees
asymptotic stability of the position tracking errors

as well as the contact force errors.
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Appendix

Appendix A
Proof of J '=-—J ' J J.
Noting that J.J."'=FE, we obtain Jj.J, '
+J.J.7'=0. Thus it is that J,'=
—J N
Appendix B
Proof of TP2] in Eq. (25):
Assuming that N, is a skew-symmetric, we see
that §'N.€=0, ¥<R"*. Hence, set
XNx=%"] {{JTMIY
—2JTTC) T~ JTTMI T T I '
=% JT(M-20)J.7'%
Since the matrix (M —2C) is a skew-symmetric,
we have Z'(M—-2C)Z=0, with Z=J."'x.
Therefore, we conclude that the matrix AN, is also

clear

a skew-symmetric.
Appendix C
Proof of ¢@7® >0: To begin, we note that

00’0=0(0" - 0" O=0(|6|'~0')
zololel— e+ 6.—]6))

Note also that o[ @|(]|@ — @) >0 and @,=| 6|,
it follows that @@ >0.



